Package 'ShapleyValue'

Title: Shapley Value Regression for Relative Importance of Attributes
Description: Shapley Value Regression for calculating the relative importance of independent variables in linear regression with avoiding the collinearity.
Authors: Jingyi Liang
Maintainer: Jingyi Liang <[email protected]>
License: MIT + file LICENSE
Version: 0.2.0
Built: 2025-03-12 04:02:05 UTC
Source: https://github.com/cran/ShapleyValue

Help Index


ShapleyValueRegression – to calculate the relative importance of attributes in linear regression

Description

Shapley Value Regression for calculating the relative importance of independent variables in linear regression with avoiding the collinearity.

Arguments

y A coloumn or data set of the dependent variable

x A matrix or data set of the independent variables

Value

The structure of the output is a datatable, with two rows:the unstandardized and standardized relative importance of each attributes using shapley value regression method.

Examples

library(MASS)
library(tidyverse)
data <- Boston
y <- data$medv
x <- as.data.frame(data[,5:8])
shapleyvalue(y,x)